Sample publications Resulted from Landt/Land/Lanhe Battery Test Systems

Each year hundreds of publications on battery test and energy storage material research referenced Landt/Land/Lanhe battery test systems. Here are some sample publications.

1. Cui, X.; Feng, H.; Liu, J.; Tang, F.; Li, H., Porous LiMn 2 O 4 Nano-Microspheres as Durable High Power Cathode Materials for Lithium Ion Batteries. Russian Journal of Electrochemistry 2019, 55 (5), 351-357.
2. Fu, Y.; Hu, J.; Wang, Q.; Li, K.; Zhou, L., Thermally etched porous carbon cloth catalyzed by metal organic frameworks as sulfur hosts for lithium–sulfur batteries. Carbon 2019, 150, 76-84.
3. Ladpli, P.; Nardari, R.; Kopsaftopoulos, F.; Chang, F.-K., Multifunctional energy storage composite structures with embedded lithium-ion batteries. Journal of Power Sources 2019, 414, 517-529.
4. Lee, G.; Greco, N.; Remulla, G., Synthesis and Characterization of Novel Electrode Material for Lithium-Sulfur Batteries. 2019.
5. Li, H.; Zhang, B.; Zhou, Q.; Zhang, J.; Yu, W.; Ding, Z.; Tsiamtsouri, M. A.; Zheng, J.; Tong, H., Dual-carbon confined SnO2 as ultralong-life anode for Li-ion batteries. Ceramics International 2019, 45 (6), 7830-7838.
6. Li, S.; Xie, J.; Zhao, D.; Geng, S.; Li, H.; Li, C.; Cui, X.; Zhang, N., Morphological evolution of spinel disordered LiNi 0.5 Mn 1.5 O 4 cathode materials for lithium-ion batteries by modified solid-state method. Ionics 2019, 25 (5), 1999-2006.
7. Liang, K.; Ju, L.; Koul, S.; Kushima, A.; Yang, Y., Self‐Supported Tin Sulfide Porous Films for Flexible Aluminum‐Ion Batteries. Advanced Energy Materials 2019, 9 (2), 1802543.
8. Liu, X.; Xue, J.; Zhang, P.; Wang, Z., Effects of the combinative Ca, Sm and La additions on the electrochemical behaviors and discharge performance of the as-extruded AZ91 anodes for Mg-air batteries. Journal of Power Sources 2019, 414, 174-182.
9. Liu, X.; Zhang, P.; Xue, J., The role of micro-naoscale AlSb precipitates in improving the discharge performance of Al-Sb alloy anodes for Al-air batteries. Journal of Power Sources 2019, 425, 186-194.
10. Lv, Y.; Shang, M.; Chen, X.; Niu, J., Double-Net Enclosed Sulfur Composite as A New Cathode In Lithium Sulfur Batteries. The Journal of Physical Chemistry C 2019.
11. Shi, C.; Wang, T.; Liao, X.; Qie, B.; Yang, P.; Chen, M.; Wang, X.; Srinivasan, A.; Cheng, Q.; Ye, Q., Accordion-like stretchable Li-ion batteries with high energy density. Energy Storage Materials 2019, 17, 136-142.
12. Xie, F.; Zhang, L.; Gu, Q.; Chao, D.; Jaroniec, M.; Qiao, S.-Z., Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. Nano Energy 2019, 60, 591-599.
13. Liu, X.; Liu, S.; Xue, J., Discharge performance of the magnesium anodes with different phase constitutions for Mg-air batteries. Journal of Power Sources 2018, 396, 667-674.
14. Rahman, M. A.; Wong, Y. C.; Song, G.; Zhu, D. M.; Wen, C., Improvement on electrochemical performances of nanoporous titania as anode of lithium-ion batteries through annealing of pure titanium foils. Journal of energy chemistry 2018, 27 (1), 250-263.
15. Wu, B.; Wang, S.; Lochala, J.; Desrochers, D.; Liu, B.; Zhang, W.; Yang, J.; Xiao, J., The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy u0026amp; Environmental Science 2018, 11 (7), 1803-1810.
16. Yu, Y.; Chen, M.; Wang, S.; Hill, C.; Joshi, P.; Kuruganti, T.; Hu, A., Laser sintering of printed anodes for al-air batteries. Journal of The Electrochemical Society 2018, 165 (3), A584-A592.
17. Subramaniyam, C. M.; Celio, H.; Shiva, K.; Gao, H.; Goodneough, J. B.; Liu, H. K.; Dou, S. X., Long stable cycling of fluorine-doped nickel-rich layered cathodes for lithium batteries. Sustainable Energy u0026amp; Fuels 2017, 1 (6), 1292-1298.
18. Chen, X., Rational Design of Cathode Materials for High Performance Lithium-Sulfur Batteries. 2016.
19. Cheng, C., Synthesis of LiFePO4/C Cathode Nanomaterials for Lithium-Ion Batteries. 2016.
20. Ma, J.-l.; Zhang, X.-b., Optimized nitrogen-doped carbon with a hierarchically porous structure as a highly efficient cathode for Na–O 2 batteries. Journal of Materials Chemistry A 2016, 4 (25), 10008-10013.
21. Wang, D.; Wei, Q.; Sheng, J.; Hu, P.; Yan, M.; Sun, R.; Xu, X.; An, Q.; Mai, L., Flexible additive free H 2 V 3 O 8 nanowire membrane as cathode for sodium ion batteries. Physical Chemistry Chemical Physics 2016, 18 (17), 12074-12079.
22. Wang, X.; Jia, W.; Wang, L.; Huang, Y.; Guo, Y.; Sun, Y.; Jia, D.; Pang, W.; Guo, Z.; Tang, X., Simple in situ synthesis of carbon-supported and nanosheet-assembled vanadium oxide for ultra-high rate anode and cathode materials of lithium ion batteries. Journal of Materials Chemistry A 2016, 4 (36), 13907-13915.
23. Bai, Y.; Zhang, H.; Fang, L.; Liu, L.; Qiu, H.; Wang, Y., Novel peapod array of Ni 2 P@ graphitized carbon fiber composites growing on Ti substrate: a superior material for Li-ion batteries and the hydrogen evolution reaction. Journal of Materials Chemistry A 2015, 3 (10), 5434-5441.
24. Li, X.-P.; Mao, J., A Li 4 Ti 5 O 12–rutile TiO 2 nanocomposite with an excellent high rate cycling stability for lithium ion batteries. New Journal of Chemistry 2015, 39 (6), 4430-4436.
25. Rahman, M. A.; Wang, X.; Wen, C., Enhanced electrochemical performance of Li-ion batteries with nanoporous titania as negative electrodes. Journal of Energy Chemistry 2015, 24 (2), 157-170.
26. Rahman, M. A.; Zhu, X.; Wen, C., Fabrication of nanoporous Ni by chemical dealloying Al from Ni–Al alloys for lithium-ion batteries. Int. J. Electrochem. Sci 2015, 10, 3767-3783.
27. Zhu, Y.; Nie, P.; Shen, L.; Dong, S.; Sheng, Q.; Li, H.; Luo, H.; Zhang, X., High rate capability and superior cycle stability of a flower-like Sb 2 S 3 anode for high-capacity sodium ion batteries. Nanoscale 2015, 7 (7), 3309-3315.
28. Zou, Y.; Zhou, X.; Yang, J., Carbon nanospheres grown on graphene as anodes for Li-ion batteries. RSC Advances 2014, 4 (49), 25552-25555.
29. Fellner, J.; Tsao, M., Novel Hybrid Cathode Incorporating Carbon Monofluoride and Phthalocyanine for Primary Lithium Batteries.